recursion formula - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

recursion formula - перевод на русский

Alpha recursion; Α-recursion theory
Найдено результатов: 661
recursion formula      

общая лексика

рекурсивная формула

milk formula         
  • An [[infant]] being fed from a [[baby bottle]]
  • Poster advertisement for Nestle's Milk by Théophile Alexandre Steinlen, 1895
  • A 1915 advertisement for "Nestlé's Food"
MANUFACTURED FOOD DESIGNED AND MARKETED FOR FEEDING OF INFANTS
Baby milk; Formula milk; Baby formula; Milk formula; Toddler formula; Infant Formula; Timeline of infant formula development; Formula feeding; Infant formula processing; Percentage method; Infant formulas; Breast-milk substitute; Hydrolyzed formula; Follow-on formula; Toddler milk; False milk; Infant milk

медицина

молочная смесь

recursiveness         
  • Malyutin]], 1892
  • Front face of [[Giotto]]'s ''[[Stefaneschi Triptych]]'', 1320, recursively contains an image of itself (held up by the kneeling figure in the central panel).
  • [[Ouroboros]], an ancient symbol depicting a serpent or dragon eating its own tail.
  • The [[Sierpinski triangle]]—a confined recursion of triangles that form a fractal
  • Recently refreshed [[sourdough]], bubbling through [[fermentation]]: the recipe calls for some sourdough left over from the last time the same recipe was made.
PROCESS OF REPEATING ITEMS IN A SELF-SIMILAR WAY
Recursion definition; Recursive; Recursivity; Recursionism; Recursively; Infinite Recursion; Recursion, infinite; Recursor function; Recursionisms; Recursion (Concept); Recursion (concept); Recursive routine; Recursions; Recursion principle; Recursive structure; Infinite loop motif; Infinite-loop motif; Recursiveness; Mathematical recursion; Base case (recursion); Recursoin; Recursive step; Recurson; Recursive humour; Recursion in natural languages; Recursion (linguistics)

[ri'kə:sivnis]

общая лексика

рекурсивность

Смотрите также

general recursiveness; partial recursiveness; potential recursiveness; primitive recursiveness; relative recursiveness; uniform recursiveness

существительное

логика

рекурсивность

formulae         
  • Dijkstra, E.W.]] (July 1996), ''[https://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1239.html A first exploration of effective reasoning]'' [EWD896]. (E.W. Dijkstra Archive, Center for American History, [[University of Texas at Austin]])</ref>
EQUATION USING MATHEMATICAL OR SCIENTIFIC NOTATION
Mathematical formula; Formulae; Formulas; Scientific formula; Formula (mathematics and physics); Formulæ; Mathematical Formulas; Mathematical formulas; Formulas in mathematics; Dimensional formula; Math formula; Fomula

['fɔ:mjuli:]

общая лексика

от formula

formula         
  • Dijkstra, E.W.]] (July 1996), ''[https://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1239.html A first exploration of effective reasoning]'' [EWD896]. (E.W. Dijkstra Archive, Center for American History, [[University of Texas at Austin]])</ref>
EQUATION USING MATHEMATICAL OR SCIENTIFIC NOTATION
Mathematical formula; Formulae; Formulas; Scientific formula; Formula (mathematics and physics); Formulæ; Mathematical Formulas; Mathematical formulas; Formulas in mathematics; Dimensional formula; Math formula; Fomula
dimensional formula         
  • Dijkstra, E.W.]] (July 1996), ''[https://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1239.html A first exploration of effective reasoning]'' [EWD896]. (E.W. Dijkstra Archive, Center for American History, [[University of Texas at Austin]])</ref>
EQUATION USING MATHEMATICAL OR SCIENTIFIC NOTATION
Mathematical formula; Formulae; Formulas; Scientific formula; Formula (mathematics and physics); Formulæ; Mathematical Formulas; Mathematical formulas; Formulas in mathematics; Dimensional formula; Math formula; Fomula

общая лексика

формула размерности

recursion         
  • Malyutin]], 1892
  • Front face of [[Giotto]]'s ''[[Stefaneschi Triptych]]'', 1320, recursively contains an image of itself (held up by the kneeling figure in the central panel).
  • [[Ouroboros]], an ancient symbol depicting a serpent or dragon eating its own tail.
  • The [[Sierpinski triangle]]—a confined recursion of triangles that form a fractal
  • Recently refreshed [[sourdough]], bubbling through [[fermentation]]: the recipe calls for some sourdough left over from the last time the same recipe was made.
PROCESS OF REPEATING ITEMS IN A SELF-SIMILAR WAY
Recursion definition; Recursive; Recursivity; Recursionism; Recursively; Infinite Recursion; Recursion, infinite; Recursor function; Recursionisms; Recursion (Concept); Recursion (concept); Recursive routine; Recursions; Recursion principle; Recursive structure; Infinite loop motif; Infinite-loop motif; Recursiveness; Mathematical recursion; Base case (recursion); Recursoin; Recursive step; Recurson; Recursive humour; Recursion in natural languages; Recursion (linguistics)
рекурсия
formula         
  • Dijkstra, E.W.]] (July 1996), ''[https://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1239.html A first exploration of effective reasoning]'' [EWD896]. (E.W. Dijkstra Archive, Center for American History, [[University of Texas at Austin]])</ref>
EQUATION USING MATHEMATICAL OR SCIENTIFIC NOTATION
Mathematical formula; Formulae; Formulas; Scientific formula; Formula (mathematics and physics); Formulæ; Mathematical Formulas; Mathematical formulas; Formulas in mathematics; Dimensional formula; Math formula; Fomula
сущ.
1) формула; определение;
2) математическая величина;
3) религиозный догмат;
4) шаблон, стереотип.
formula         
  • Dijkstra, E.W.]] (July 1996), ''[https://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1239.html A first exploration of effective reasoning]'' [EWD896]. (E.W. Dijkstra Archive, Center for American History, [[University of Texas at Austin]])</ref>
EQUATION USING MATHEMATICAL OR SCIENTIFIC NOTATION
Mathematical formula; Formulae; Formulas; Scientific formula; Formula (mathematics and physics); Formulæ; Mathematical Formulas; Mathematical formulas; Formulas in mathematics; Dimensional formula; Math formula; Fomula
formula         
  • Dijkstra, E.W.]] (July 1996), ''[https://www.cs.utexas.edu/users/EWD/transcriptions/EWD12xx/EWD1239.html A first exploration of effective reasoning]'' [EWD896]. (E.W. Dijkstra Archive, Center for American History, [[University of Texas at Austin]])</ref>
EQUATION USING MATHEMATICAL OR SCIENTIFIC NOTATION
Mathematical formula; Formulae; Formulas; Scientific formula; Formula (mathematics and physics); Formulæ; Mathematical Formulas; Mathematical formulas; Formulas in mathematics; Dimensional formula; Math formula; Fomula
formula noun; pl. -as -ae 1) формула, формулировка 2) формула (в точных науках) 3) лозунг, доктрина 4) рецепт

Определение

tail recursion
<programming> When the last thing a function (or procedure) does is to call itself. Such a function is called tail recursive. A function may make several recursive calls but a call is only tail-recursive if the caller returns immediately after it. E.g. f n = if n < 2 then 1 else f (f (n-2) + 1) In this example both calls to f are recursive but only the outer one is tail recursive. Tail recursion is a useful property because it enables {tail recursion optimisation}. If you aren't sick of them already, see recursion and {tail recursion}. [Jargon File] (2006-04-16)

Википедия

Alpha recursion theory

In recursion theory, α recursion theory is a generalisation of recursion theory to subsets of admissible ordinals α {\displaystyle \alpha } . An admissible set is closed under Σ 1 ( L α ) {\displaystyle \Sigma _{1}(L_{\alpha })} functions, where L ξ {\displaystyle L_{\xi }} denotes a rank of Godel's constructible hierarchy. α {\displaystyle \alpha } is an admissible ordinal if L α {\displaystyle L_{\alpha }} is a model of Kripke–Platek set theory. In what follows α {\displaystyle \alpha } is considered to be fixed.

The objects of study in α {\displaystyle \alpha } recursion are subsets of α {\displaystyle \alpha } . These sets are said to have some properties:

  • A set A α {\displaystyle A\subseteq \alpha } is said to be α {\displaystyle \alpha } -recursively-enumerable if it is Σ 1 {\displaystyle \Sigma _{1}} definable over L α {\displaystyle L_{\alpha }} , possibly with parameters from L α {\displaystyle L_{\alpha }} in the definition.
  • A is α {\displaystyle \alpha } -recursive if both A and α A {\displaystyle \alpha \setminus A} (its relative complement in α {\displaystyle \alpha } ) are α {\displaystyle \alpha } -recursively-enumerable. It's of note that α {\displaystyle \alpha } -recursive sets are members of L α + 1 {\displaystyle L_{\alpha +1}} by definition of L {\displaystyle L} .
  • Members of L α {\displaystyle L_{\alpha }} are called α {\displaystyle \alpha } -finite and play a similar role to the finite numbers in classical recursion theory.
  • Members of L α + 1 {\displaystyle L_{\alpha +1}} are called α {\displaystyle \alpha } -arithmetic.

There are also some similar definitions for functions mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } :

  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursively-enumerable, or α {\displaystyle \alpha } -partial recursive, iff its graph is Σ 1 {\displaystyle \Sigma _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursive iff its graph is Δ 1 {\displaystyle \Delta _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • Additionally, a function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -arithmetical iff there exists some n ω {\displaystyle n\in \omega } such that the function's graph is Σ n {\displaystyle \Sigma _{n}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .

Additional connections between recursion theory and α recursion theory can be drawn, although explicit definitions may not have yet been written to formalize them:

  • The functions Δ 0 {\displaystyle \Delta _{0}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} play a role similar to those of the primitive recursive functions.

We say R is a reduction procedure if it is α {\displaystyle \alpha } recursively enumerable and every member of R is of the form H , J , K {\displaystyle \langle H,J,K\rangle } where H, J, K are all α-finite.

A is said to be α-recursive in B if there exist R 0 , R 1 {\displaystyle R_{0},R_{1}} reduction procedures such that:

K A H : J : [ H , J , K R 0 H B J α / B ] , {\displaystyle K\subseteq A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{0}\wedge H\subseteq B\wedge J\subseteq \alpha /B],}
K α / A H : J : [ H , J , K R 1 H B J α / B ] . {\displaystyle K\subseteq \alpha /A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{1}\wedge H\subseteq B\wedge J\subseteq \alpha /B].}

If A is recursive in B this is written A α B {\displaystyle \scriptstyle A\leq _{\alpha }B} . By this definition A is recursive in {\displaystyle \scriptstyle \varnothing } (the empty set) if and only if A is recursive. However A being recursive in B is not equivalent to A being Σ 1 ( L α [ B ] ) {\displaystyle \Sigma _{1}(L_{\alpha }[B])} .

We say A is regular if β α : A β L α {\displaystyle \forall \beta \in \alpha :A\cap \beta \in L_{\alpha }} or in other words if every initial portion of A is α-finite.

Как переводится recursion formula на Русский язык